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Abstract— The paper presents an indoor mapping and UWB (ultra-
wideband) anchor localization method. The method, unlike most of
the solutions described it the literature uses a static LiDAR (Light
Detection and Ranging) mounted on a tripod rather than a robotic
platform. It can be used at an any place, where employing a robot
would be difficult (e.g. private homes), but since it requires manual
LiDAR placement it would be most efficient in spaces of moderate
areas. The proposed concept consists in mapping the environment
of system installation while performing ranging measurements with
deployed UWB anchor nodes. The SLAM (Simultaneous Location
and Mapping) algorithm used for map integration and device local-
ization relies only on LiDAR results. The matching is performed in
two steps by finding an initial match based on corresponding landmarks extracted from the scans (intersections of the
detected wall lines) and refining the results using an Iterative Closest Point algorithm. The anchors are localized based
on the ranging results and SLAM-derived device locations using a Least-Squares based optimizer. The experiments have
shown that the algorithm allows to construct a comprehensive map of the environment and localize the anchors with a
root mean square error of 0.34 m, which is at similar level to analogous methods described in other works. The impact
of anchor localization error on the systems performance was not significant. In both static and dynamic scenarios the
difference in median errors obtained using reference and mapped anchors’ locations was about 0.05 m.

Index Terms— positioning, SLAM, UWB

I. INTRODUCTION

DEPLOYING an indoor localization system at an un-
known place might be a demanding task. It requires

assessing the necessary number of anchors nodes, choosing
their placement, installing them and accurately determining
their coordinates in a chosen coordinate system. Typically,
all of the steps including system infrastructure mapping are
performed manually, which makes system installation a time-
consuming task.

Manual mapping of the system infrastructure usually con-
sists in determining relative anchor locations with respect to
neighboring walls and then transforming them to a common
coordinate system. This procedure does not pose much of
a problem, when there are actual plans of the deployment
area available. Unfortunately, such situation, due to frequent
renovations of indoor spaces making the plans outdated, is not
common and prior mapping of the environment is required.
It can be performed either manually using a laser distance
meter or automatically using SLAM-based (simultaneous lo-
calization and mapping) systems. As manual mapping requires
making a large amount of measurements and the quality of
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the obtained maps rarely reflects the effort taken, employing
SLAM-based solutions would be a better choice as they
typically allow to achieve higher quality maps with lower
effort.

A. Simultaneous localization and mapping methods
Typically, SLAM methods are applied in systems using

mobile robotic platforms [1] equipped with 2D/3D LiDAR
(Light Detection and Ranging) scanners [1] or vision cameras
[2]. The robots are usually equipped with additional sensors al-
lowing for their relative localization such as odometry wheels
[1] or IMUs (Inertial Measurement Units) [3]. The indoor
applications of SLAM solutions using sensors mounted on
tripods [3] [2] are much less common.

The main reason behind this is that employing robotic
platforms allows to automate the measurements and collect
scans in a large number of points, which would rarely be
collected manually due to time-constraints. Large number of
scans and additional data from IMUs or odometry enable
use of efficient SLAM methods and easier creation of high
quality maps. In case of a LiDAR mounted on a tripod, the
lack of additional sensors narrows the choice of applicable
methods, which may make scan matching harder. However,
using stationary LiDARs has some distinct advantages.

First of all, a LiDAR mounted on a regulated tripod allows
to take scans at different heights, which is usually not possible
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in case of robotic platforms. That makes an opportunity to
capture only the desired objects and avoid potentially prob-
lematic pieces of furniture such as mirrors. For example, in
case of person localization, the scans taken at chest height
would exclude low furniture such as sofas occupying places
where the person can be present. Taking the scan at the same
place and at different heights might also allow for extraction
of room boundaries or particular furniture pieces, which might
be used for different purposes (e.g presence detection). An
another advantage of using stationary LiDARs is their lower
overall cost. Moreover, a setup consisting of a sensor and a
tripod is easier to transport, which is convenient in case of
deploying localization systems at remote sites.

The use of a stationary scanner might also be justified for
mapping smaller areas e.g. private flats, where the numbers of
required scans would be moderate and acceptable to collect
manually. Additionally, using the robots at such places might
be hard or impossible due to large amount of objects cluttering
the floor (carpets etc.) or the presence of pets. The authors
experiences gained during deploying localization systems at
several elderly people apartments confirm that [4].

As noted above, most of the developed SLAM algo-
rithms utilize, along the registered scans, odometry and IMU
data returned by the robots. The most notable examples
include EKF-based (Extended Kalman Filter) SLAM [5],
Rao-Blackwellized [6] particle filters and graph-based SLAM
algorithms [1]. In case of stationary LiDARs, the matching
can be performed solely based on landmarks extracted from
the scans. Therefore, the scans should be taken with care to
ensure that the consecutive scans capture enough landmarks
to make scan fitting possible. Otherwise, matching far away
scans might be highly ineffective [2].

One of the basic scan matching methods is Iterative Closest
Point (ICP) algorithm [7], which consists in finding a trans-
formation (translation and rotation) through minimizing the
minimum distances between subsets of points of the matched
scans. The method yields good results, but only if the matched
scans are close to each other. When the scans are taken in
distant points, they typically require prior matching. In most
cases it is done based on corresponding landmarks extracted
from both scans.

The landmarks used for scan matching are typically easy-to-
detect objects like walls, corners or characteristic points (e.g.
columns). The method presented in [8] extracts line segments
from the scans, finds parallel segments and estimates rotation
between the scans. Then it performs fitting for randomly
selected segments and chooses the best match. A different
method merging scans based on detected line segments is
presented in [9].

In [10], the corners in matched maps are detected and
used to construct corresponding polygons, which are basis for
matching. The method allows to match two maps accurately.
However, its use for singular scans might not be successful,
since the number of the detected corners will usually be low.
The landmarks can also be more complex objects. In [11] a
method, where scan features are approximated and represented
as implicit functions is proposed.

The methods where the matching is done without landmarks

extraction are less common. Examples of such algorithms are
presented in [12] and [13], where the scans are matched by
analyzing the shift between their Hough transforms.

B. Infrastructure localization

The effort associated with deploying UWB systems can
be reduced even more by employing algorithms allowing for
automatic positioning of the infrastructure. In literature, there
are several examples of methods, which combine SLAM with
UWB-based ranging in order to map the environment and
determine the unknown locations of the anchor nodes [14]–
[18]. In those methods the anchors are positioned based on
ranging performed between a tag attached to a robot and the
anchors. The measurement locations are obtained with the
attached SLAM systems and sensors.

Most of the described solutions utilize camera-based SLAM
[14]–[17]. In [14] a monocular camera is mounted alongside
an IMU and an UWB sensor on a drone, which flies a path cov-
ering the system deployment area. The UWB sensor performs
concurrent ranging with the system infrastructure and when
results are collected in a sufficient number of locations (100 in
the described implementation), the anchors are localized using
a Least-Squares based algorithm. An analogous set of sensors
is used in [15], where the drone flies around the anchors and
positions them based based on visual data (the anchors are
labeled with fiducial markers).

A similar solution is presented in [16], where the method
fuses data from a camera, an IMU and UWB-ranging results to
localize an anchor added to the system infrastructure. It allows
to easily expand the system, but since it requires information
on the location of the already deployed anchors it can not be
employed in the considered problem.

An interesting concept is presented in [17], where a drone
equipped with a camera is used to deploy anchors in an
unknown environment. The camera and drone sensors are used
to get initial guess of the anchors positions. The estimates
are then refined with a hybrid algorithm fusing visual data
with UWB-ranging. The proposed concept was verified with
simulations.

The solutions with sensors other than cameras are less
common. In [18] a method combining UWB-ranging with
results from a LiDAR is presented. In the proposed algorithm
the anchors perform peer-to-peer ranging and their relative
placement is determined using an Extended Kalman Filter.
The resulting constellation is then located with respect to the
created map based on results of ranging between the infras-
tructure and a tag attached to the robot. Adding peer-to-peer
ranging between the anchors allows for efficient localization of
the anchors. However, since it is not a common functionality
of the UWB systems, the method would be hard to implement
in the already existing solutions.

The following paper presents a method adopting a similar
approach. The proposed method consists in mapping the
environment, where the system is installed using a station-
ary LiDAR mounted on a tripod while performing ranging
measurements with already deployed anchor nodes using an
attached tag. The registered scans are matched and the sensor
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is localized based on landmarks being an intersections of
lines covering the detected wall segments. The locations of
the anchors are then determined based on UWB-ranging
results using a Least-Squares based algorithm. The presented
procedure results in a map of the system deployment area and
coordinates of the system anchors.

The proposed method might be used in almost all indoor
deployment scenarios. However, its advantages will be most
visible, while deploying systems in spaces of moderate areas
(private homes, smaller offices). Those areas are often cramped
with furniture and using a robot for mapping might be not
possible. Additionally the number of required scans would not
be high, so manual sensor placement would not pose much
of a problem. Moreover, as the method does not require any
special functionality from the system (e.g. anchor-to-anchor
ranging), it could be applied in virtually every ranging-based
indoor positioning system.

II. METHOD CONCEPT

The proposed infrastructure localization method assumes
using a device consisting of a laser scanner and an UWB tag
mounted on a regulated tripod (Fig. 1). The scanner is used
to map the area of the system deployment and position the
device with respect to the created plan. The tag is used for
concurrent ranging between the tag and anchors comprising
system infrastructure.

An exemplary scenario of the proposed method’s use is
presented in Fig. 2. During the procedure, the device is
placed in several points spread across the area of the system
installation. In order to properly map the area and position the
device, those points should satisfy the following conditions:

• from each of the points at least one of the other measure-
ment points should be directly visible (it assures that the
scans will have common parts)

• the distance between the points should be moderate (in
[2], some 3-meter-apart scans required manual fitting).

The gathered scans are integrated using a SLAM algorithm
to construct a whole map of the area and get the location
of the measurement points. The obtained locations and tag-
anchor ranging results are then used to localize the system
infrastructure.

In general, in the proposed concept, it would be possible
to determine both x,y coordinates and the elevation of the
anchor. However, as the measurements would be typically
taken with the tag mounted at similar heights, the resulting
elevation might be very inaccurate or not unambiguous. There-
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Fig. 1. Infrastructure deployment support system concept

Fig. 2. An exemplary system deployment scenario (dmn is a distance
measured between the device in a test point m and an anchor n)

tag

anchor

1

1

2

32

3

Fig. 3. An exemplary exchange of messages during SDS-TWR
(Symmetric-Double-Sided Two-Way-Ranging) procedure

fore, the method would benefit from manual anchor elevation
measurement and using the results as additional input data.

In the presented study, the concept was implemented in
an UWB-based system [4]. The distances between the tag
and the anchors were estimated using the popular SDS-TWR
(Symmetrical Double Sided – Two Way Ranging) method. It
relies on an exchange of messages between two devices to
estimate propagation time between them and thus the distance.

An exemplary packet exchange and the measured values
is presented in Fig. 3. The tag initiates ranging by sending
a message addressed to a particular anchor node (ranging
is performed with one anchor at a time), which registers
the packet’s time of arrival. After a predefined period T2
the anchor replies with its own message. The tag, upon the
reception of that message, measures its time of arrival and
after T3 time transmits the concluding packet. During the
procedure both the tag and the anchor measure two time
periods: between packet transmission and response reception
(Tm

1 and Tm
4 respectively) and between packet reception

and retransmission (Tm
2 and Tm

3 ). The measured periods are
affected by clock signal sources uncertainties. The measured
values can be expressed as:

Tm
1 = T1(1 + εT) Tm

2 = T2(1 + εAN)

Tm
3 = T3(1 + εT) Tm

4 = T4(1 + εAN)
(1)

where T1, T3, T3, and T4 are true period values and εT and
εAN are used to describe stability of the tag’s and anchor’s
clock signal sources. The values of εT and εAN depend on
the clock signal source quality and in case of a typically used
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crystal oscillators might be even as high as 10−6 (10 ppm),
which can lead to ranging biases of several meters. Based on
Fig.3, the propagation time between the devices is:

tp =
Tm
1 − Tm

2 + Tm
4 − Tm

3

4
(2)

Including the uncertainties (1) it can be expressed as:

tp =
T1 − T2 + T4 − T3

4

+
(T1 − T3)εT + (T4 − T2)εAN

4

(3)

If the following conditions are fulfilled: T1 ≈ T3 and T2 ≈ T4
(the periods are large in comparison to the propagation time),
the measurement error caused by the tag’s and anchor node’s
clock’s uncertainties may be significantly reduced.

III. ALGORITHMS

A. SLAM algorithm
The proposed system deployment support method consists

of two steps: environment mapping and infrastructure lo-
calization. The former is performed using a scan matching
algorithm, which basic steps are reported as Algorithm 1.

The input data for the scan matching algorithm are LiDAR
scans S1 . . . Sn registered in measurement points s1 . . . sn and
a scan fitting sequence comprising pairs of consecutive scans,
which will be fit to each other. The procedure starts with
preprocessing of each of the collected scans. Then for each
pair in the sequence, a transformation tn,m (translation and
rotation of scan Sn with respect to scan Sm) is found. The
last step is the integration of the scans into a complete map
of the area.

The preprocessing consists in grouping the results by mea-
surement angle and determining measured distance median
for each group. It reduces the size of the scan and lowers
the measurement noise. The resulting scan is converted to x-
y coordinate system and landmarks, which will be used for
initial matching are extracted as described in Algorithm 2.

The first step is extraction of wall segments from the scan
and approximating them with straight lines by first degree
polynomial fitting (the method estimates slope and intercept).
For that purpose any method extracting line segments from the
scan (e.g. Hough-based [19]) may be used. In the presented
implementation the walls are detected in a similar fashion to
[8] by analyzing consecutive scan points sorted in a clockwise
order and building lines from the closely spaced points.

The detected lines are used to extract landmarks which will
be used to initially match the scans. In the proposed method
the landmark points are intersections of the detected lines.
The resulting landmark sets include both wall intersections
and virtual ones, which do not exist in real environment.
Such approach may enlarge the total number of corresponding
landmarks, which in case of singular scans might be limited.
An example of detected lines and landmark points is presented
in Fig. 4.a.

The presented scans are quite simple as the areas, where
they were taken do not include a lot of furniture. In case
of cluttered spaces, a number of detected lines might be

Algorithm 1 Scan matching algorithm
Input: scans S1 . . . Sn, scan matching sequence
Output: a map SMAP , measurement locations s1 . . . sn

1: for each scan Sm do
2: reduce scan size and noise
3: convert to x-y coordinates
4: Lm ← detect landmarks . see Algorithm 2
5: for each pair of scans Sm − Sn in sequence do
6: Tn,m ← initial matching . see Algorithm 3
7: tn,m ← refined matching . see Algorithm 4
8: SMAP , s1 . . . sn ← integrate the scans

Algorithm 2 Landmark extraction algorithm
Input: scan S
Output: landmark points L

1: W ← wall segments in S approximated with lines
2: L← [ ]
3: for wall line in W do
4: I ← intersections with the lines remaining in W
5: add the points I to L
6: L← cluster the points in L

substantial, which would result in a large landmark set and
increase algorithms computational demands. The number of
landmarks can be lowered without significant information loss
by clustering closely-spaced points or imposing additional
conditions such as minimum length of the detected line
segments, which are used to calculate the landmark locations.
In the presented study, only walls, which were longer than
0.3 m were considered (shorter lines detected in the scans re-
sulted from cluttering objects and room corners). The obtained
landmarks are then used for initial scan matching reported as
Algorithm 3.

The initial matching consists in finding three corresponding
landmark points in both scans and using a Least-Squares based
algorithm estimating the translation and rotation between
them. The sought transform tn,m is defined as:

tn,m = [tx, ty, θ] (4)

Sn,t =

[
cos θ − sin θ
sin θ cos θ

]
Sn − [tx, ty] (5)

where Sn,t is a transformed scan Sn matched to reference scan
Sm, tx and ty are the translations of the measurement device
along x,y directions and θ is the rotation between the scans
(difference in initial scanner orientation in both measurement
points).

The procedure starts with getting all possible 3-point com-
binations for both landmark sets. For each combination inter-
point distances are calculated and saved alongside. Then
the combinations from both sets are analyzed in search of
threes of points, which may include the same landmarks.
The procedure compares the inter-point distances and if the
difference between them is within a specified range (in the
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presented implementation it was set to 0.1 m) both landmark
combinations are saved as a tuple to corresponding landmarks
set CL. An example of corresponding landmarks is presented
in Fig. 4.a.

The number of the corresponding landmarks used for match-
ing could be higher as in [10], where complex polygons are
considered. Such an approach might result in better accuracy
but would be possible to adopt only in certain situations (e.g.
scans made in the same room). In the considered case, the
scans might be taken in distant points located in separate
rooms and the number of corresponding landmarks would be
typically lower due to different walls being captured (Fig.
4.a). However, due to the assumed tolerance, the algorithm
still could erroneously return a larger set of corresponding
landmarks resulting in bad matching and shadow the correct
solution. To avoid such situations, the number of sought
landmarks was set to three.

The resulting landmark sets are used to calculate the trans-
lation and rotation between the scans. An exemplary result of
initial matching is presented in Fig. 4.b. Due to the fact that
the landmarks for both scans are usually determined based on
different wall segments and the algorithm allows dimension
tolerance, the initial fit might not be perfect.

The obtained results are analyzed to find transformations,
for which the scans are closely aligned and the matching could

(a)

(b)

Fig. 4. Matched scans at different stages or the algorithm: a) corre-
sponding landmarks extraction, b) refined fitting

Algorithm 3 Initial matching procedure
Input: Landmarks Lm, Ln and scans Sm, Sn

Output: initial transformations T
1: Pm, Pn ← all 3-point combinations for Lm, Ln and

distances between the points
2: CL ← find corresponding 3-point combinations in Pm,
Pn sets (same distances criterion)

3: T ← [ ], scores← [ ]
4: for corresponding landmark sets cm, cn in CL do
5: for i in {0, 1, 2} do
6: tn,m ← find transformation matching cn to cm

shifted by i
7: add tn,m to T
8: for t in T do
9: Sn,t ← rotate and translate Sn by t

10: x← number of Sn,t points, which CPD < dmax

11: add x to scores
12: sort T by scores
13: T ← T [: 5] . return 5 best matches

Algorithm 4 Refined matching procedure
Input: scans Sm, Sn and initial transformations T
Output: transformation t

1: T ← [ ], scores← [ ]
2: for t in T do
3: Sn,t ← rotate and translate Sn by t
4: Pf ← Sn,t points, which CPD < dmax

5: t← find transformation based on Pf and Sm

6: add t to Tf
7: Sn,t ← rotate and translate Sn by t
8: x← number of Sn,t points, which CPD < dmax

9: add x to scores
10: sort Tf by scores
11: t← T [0] . return the best match

be refined using an iterative closest point (ICP) algorithm. It is
done by calculating the closest point distance CPD (smallest
distance between a point and a set of points) between the
matched scans. The algorithm chooses five translations with
the highest number of points which closest point distance
is less than dmax. In the described implementation dmax

was set to 0.4 m. Using lower values, the algorithm might
favor transformations, for which a small number of points is
aligned (e.g. erroneous fitting of one wall only). The number
of translations passed to the refined matching procedure might
be higher. However, the initial tests have shown that in case
of all matched scan pairs taking the top five was enough to
achieve the desired result.

In the proposed implementation, the refined matching is
performed based on the iterative closest point algorithm using
a Least-Squares (LS) based optimizer minimizing distance
between scan points, for which CPD is lower than a set
threshold dmax (0.4 m in the performed tests). The LS
problem was solved using the Levenberg-Marquardt method.
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The obtained transformations are then ranked in the same
fashion as in case of initial matching and the best one is chosen
as the final result. The example of the fitted scans is presented
in Fig. 4.b.

The last part of the scan matching procedure is integrating
the registered scans into one, complete map SMAP of the sys-
tem deployment area. It consists in transforming the obtained
rotations and translations to obtain values relative to the first
scan of the sequence. It is done by performing appropriate
translations and rotations:

t(n,0)x = t(m,0)
x + t(n,m)

x cos θ(m,0) + t(n,m)
y sin θ(m,0) (6)

t(n,0)y = t(m,0)
y + t(n,m)

y cos θ(m,0) − t(n,m)
x sin θ(m,0) (7)

θ(n,0) = θ(m,0) + θ(n,m) (8)

where tn,mx , tn,my , θn,m are translation and rotation of scan
n relative to scan m (matching result) and tn,0x , tn,0y , θn,0 are
relative to the first scan of the sequence. Finally, the locations
of the measurement points n can be expressed as:

sn =
[
t(n,0)x , t(n,0)y

]
(9)

The obtained transformations are imposed on the scans and
a complete map of the system deployment area is created.
The locations of the measurement points are then used by
infrastructure localization algorithm.

B. Infrastructure localization

The second step of the proposed system deployment sup-
port method is localization of the system infrastructure. An
exemplary scenario with measured values marked is presented
in Fig. 2.

In the proposed concept, the anchors are localized based
on distance measurements (dmp) performed by the tag placed
in several points (sm) distributed in the area covered by
the system. The location of those points is derived using a
SLAM algorithm described in Section III-A. In addition to
the distances, the algorithm requires information on anchors’
elevation. Measuring height, at which the anchor is fixed does
not significantly increase the installation workload and would
allow to increase anchor positioning accuracy.

In the proposed method, the anchors are localized separately
using a Least-Squares based optimizer implemented using the
Levenberg-Marquardt method. The optimizer minimizes the
difference between the measured tag-anchor distance and the
one predicted by the algorithm:

min
ax,ay

n−1∑
i=0

(‖ap − si‖ − dip)2 (10)

where ap is the anchor p location and ax, ay are its sought
x,y coordinates (az is measured manually at deployment
and is supplied as an input to the algorithm), si are the
locations of the measurement points and dip is the measured
distance between them and the anchor. The obtained anchor
locations are then saved and supplied to the localization system
controller.

IV. EXPERIMENTS

The proposed concept has been experimentally tested in
a hybrid BLE (Bluetooth Low Energy)-UWB localization
system developed at Warsaw University of Technology [4].
The UWB part of the system is primarily TDOA (Time
Difference of Arrival) based, so utilizing the method required
implementing SDS-TWR ranging procedures between the tag
and the anchors. Ranging results were transmitted by the
anchors over WiFi to a localization server installed on a
computer. The obtained measurement data were processed
using a Python-based implementation of the proposed method.

The experiment was performed at the office space of the
university. The area, comprised three rooms and an adjacent
corridor. The system used in the study consisted of 7 anchors,
which were placed on the walls and tripods. The layout of the
area and localization of the anchors are presented in Fig. 5.a.
The performed experiment consisted of two phases:

• environment mapping and infrastructure localization,
• assessing an impact of anchors localization errors on

system’s performance.
The scans and tag-anchor distance measurements were taken

in 18 points distributed across the rooms. The locations of the
points are presented in Fig. 5.a. In each point, one-minute long
measurement was taken. The area scans were captured using
a Scanse Sweep LiDAR sensor (as of 2020 retired and out
of stock) working with 2 Hz rotation and 500 Hz sampling
rates. The system tag allowed for ranging with a rate of 10
Hz. Given that there were 7 anchors to range with, the distance
from each anchor was measured approximately 100 times.
The anchor nodes’ locations were determined based on the
averaged values. The results of the environment mapping and
infrastructure localization are presented in Fig.5.a.

The gathered scans were matched appropriately, which re-
sulted in a comprehensive map of the environment. Mounting
the scanner on the regulated tripod allowed to capture scans
without furniture, which can be used to determine room
boundaries (marked with dark grey) often required by presence
detection algorithms.

The calculated anchor locations were compared to reference
data obtained using a laser distance meter. The localization
errors of anchors are presented alongside the results in Fig. 5.a.
An accuracy comparison of the proposed method and solutions
described in the literature is presented in Table I.

The best localization accuracy was achieved in case of the
anchors placed in the middle of the area, where the error
did not exceed 0.15 cm. The worst results were obtained
for anchors located in the corners of the outer rooms. The
maximum localization error was about 0.55 m. It might result
from an unfavorable measurement points configuration (the
points were placed along a line and did not surround the
localized anchors) and the fact that due to wall attenuation
the anchors were unreachable from some points and the
number of measured distances was lower. Also the SDS-
TWR measurements performed between the tag and the anchor
separated by the wall may give biased results due to introduced
delays.

The root mean square error (RMSE) of anchor localization
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was about 0.34 m. At first sight the accuracy of the proposed
method is worse than of the ones described in the literature
(Table I). However, the results with the lowest reported errors,
are not entirely reliable as they were obtained via simulations
[17] and for localization of a single anchor [16]. The differ-
ence in accuracy between the proposed method and solutions
working in a similar fashion [14], [18] is not much and might
simply result from a fact, that the anchor localization was
determined based on measurements collected in a smaller
number of points (18 vs 100 in [14]).

The effect of the infrastructure localization errors was
assessed in the second part of the experiment, which con-
sisted in localizing static tags and a moving person. In both
scenarios, localization was performed using a hybrid RSS
(Received Signal Strength)-TDOA Unscented Kalman Filter

(a)

(b)

(c)

Fig. 5. The experiment results: a) anchor nodes localization, ε denotes
a localization error of particular anchors. Room boundaries determined
by performing scans at 2.5 m height are marked with dark grey. b) static
tags localization, c) moving person localization

TABLE I
ANCHOR LOCALIZATION RMSE COMPARISON

Method RMSE [m]
LiDAR, UWB-ranging (proposed method) 0.34
Camera, IMU, UWB-ranging [14] 0.25–0.48
Camera, IMU [15] 0.07–0.12
Camera, IMU, UWB-ranging [16] 0.06
Camera, IMU, UWB-ranging [17] 0.03
LiDAR, UWB-ranging [18] 0.07–0.21

(a)

(b)

Fig. 6. Empirical cumulative distribution functions: a) localization error
of static tags, b) trajectory error during localization of a moving person

based algorithm [4] based on reference and determined anchor
locations. The results are presented in Fig. 5b-c. Comparisons
of Empirical Cumulative Distribution Functions (ECDF) for
mean localization and trajectory errors are presented in Fig.
6. The trajectory error was defined as a closest distance of a
localization result to the reference movement trajectory.

In both static and dynamic case, the localization accuracy
based on reference and determined anchor locations is at
similar levels. In case of static tag localization the distance
between the results is at a level of several centimeters. The
trajectories obtained in dynamic scenario are slightly shifted
but their shape is preserved and in they can be used to
determine the users whereabouts and path that he/she walked.

The whole procedure of gathering data for mapping and
infrastructure localization took about 25 minutes (sensor place-
ment, data gathering and copying). It is possible to lower
that time by shortening measurement duration in each of the
points. Given that the SDS-TWR are usually precise, the lower
number of ranging samples should not negatively impact the
method’s performance.

V. CONCLUSIONS

The UWB anchor positioning method proposed in the paper
adopts an approach, where the anchors are localized based on
ranging results between them and a tag. The main difference
from the solutions described in the literature is that the tag is
mounted on a tripod rather than a mobile robotic platform or
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a drone. The method can find its application in places, where
using a robot would be hard or impossible. Due to a need of
manual tripod placement, it would be most efficient in case of
moderate areas such as apartments or small office places.

The method utilizes a scan matching algorithm designed to
fit scans based solely on range data supplied by the LiDAR.
Unlike most of the described methods it does not use any
additional data allowing for establishing geometric constrains
between the scans. The algorithm could find its application
in other different non-infrastructure localization scenarios, for
example in mapping indoor spaces without use of robotic
platforms.

The accuracy of the proposed anchor localization method is
at a similar level to those reported in the literature. Addition-
ally, the experiments have shown that the anchor localization
errors do not significantly impact positioning accuracy. This
shows that the proposed method might be considered as an
alternative solution to the methods proposed in other works
and can be successfully used to reduce the workload associ-
ated with deploying indoor positioning systems at unknown
locations.

The proposed method shows potential for future develop-
ment. The anchor localization algorithm could be improved by
introducing Non-Line of Sight working conditions detection
and mitigation, which could improve overall positioning ac-
curacy. The scan matching algorithm could also be optimized
and other type of landmarks could be extracted to make the
fitting more accurate.
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R. Chen, “The Accuracy Comparison of Three Simultaneous Local-
ization and Mapping (SLAM)-Based Indoor Mapping Technologies,”
Sensors, vol. 18, no. 10, p. 3228, Oct. 2018.

[4] J. Kolakowski, V. Djaja-Josko, M. Kolakowski, and K. Broczek,
“UWB/BLE Tracking System for Elderly People Monitoring,” Sensors,
vol. 20, no. 6, p. 1574, Mar. 2020.

[5] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency
of the EKF-SLAM Algorithm,” in 2006 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Oct. 2006, pp. 3562–3568.

[6] F. Nie, W. Zhang, Z. Yao, Y. Shi, F. Li, and Q. Huang, “LCPF: A Particle
Filter Lidar SLAM System With Loop Detection and Correction,” IEEE
Access, vol. 8, pp. 20 401–20 412, 2020.

[7] G. Jiang, L. Yin, G. Liu, W. Xi, and Y. Ou, “FFT-Based Scan-Matching
for SLAM Applications with Low-Cost Laser Range Finders,” Applied
Sciences, vol. 9, no. 1, p. 41, Jan. 2019.

[8] F. Amigoni, S. Gasparini, and M. Gini, “Building Segment-Based Maps
Without Pose Information,” Proceedings of the IEEE, vol. 94, no. 7, pp.
1340–1359, Jul. 2006.

[9] B. Sarkar, P. K. Pal, and D. Sarkar, “Building maps of indoor environ-
ments by merging line segments extracted from registered laser range
scans,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 603–615,
Apr. 2014.

[10] Y. Sun, R. Sun, S. Yu, and Y. Peng, “A Grid Map Fusion Algorithm
Based on Maximum Common Subgraph,” in 2018 13th World Congress
on Intelligent Control and Automation (WCICA). Changsha, China:
IEEE, Jul. 2018, pp. 58–63.

[11] J. Zhao, L. Zhao, S. Huang, and Y. Wang, “2D Laser SLAM With
General Features Represented by Implicit Functions,” IEEE Robotics
and Automation Letters, vol. 5, no. 3, pp. 4329–4336, Jul. 2020.

[12] A. Censi, L. Iocchi, and G. Grisetti, “Scan matching in the hough
domain,” in In Proc. of Intern. Conference on Robotics and Automation
(ICRA’05, 2005.
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